Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition.

Identifieur interne : 000208 ( Main/Exploration ); précédent : 000207; suivant : 000209

The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition.

Auteurs : Peyman P. Aryanpur [États-Unis] ; David M. Renner [États-Unis] ; Emily Rodela [États-Unis] ; Telsa M. Mittelmeier [États-Unis] ; Aaron Byrd [États-Unis] ; Timothy A. Bolger [États-Unis]

Source :

RBID : pubmed:31141444

Descripteurs français

English descriptors

Abstract

Ded1 is a DEAD-box RNA helicase with essential roles in translation initiation. It binds to the eukaryotic initiation factor 4F (eIF4F) complex and promotes 48S preinitiation complex assembly and start-site scanning of 5' untranslated regions of mRNAs. Most prior studies of Ded1 cellular function were conducted in steady-state conditions during nutrient-rich growth. In this work, however, we examine its role in the translational response during target of rapamycin (TOR)C1 inhibition and identify a novel function of Ded1 as a translation repressor. We show that C-terminal mutants of DED1 are defective in down-regulating translation following TORC1 inhibition using rapamycin. Furthermore, following TORC1 inhibition, eIF4G1 normally dissociates from translation complexes and is degraded, and this process is attenuated in mutant cells. Mapping of the functional requirements for Ded1 in this translational response indicates that Ded1 enzymatic activity and interaction with eIF4G1 are required, while homo-oligomerization may be dispensable. Our results are consistent with a model wherein Ded1 stalls translation and specifically removes eIF4G1 from translation preinitiation complexes, thus removing eIF4G1 from the translating mRNA pool and leading to the codegradation of both proteins. Shared features among DED1 orthologues suggest that this role is conserved and may be implicated in pathologies such as oncogenesis.

DOI: 10.1091/mbc.E18-11-0702
PubMed: 31141444
PubMed Central: PMC6743465


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition.</title>
<author>
<name sortKey="Aryanpur, Peyman P" sort="Aryanpur, Peyman P" uniqKey="Aryanpur P" first="Peyman P" last="Aryanpur">Peyman P. Aryanpur</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Renner, David M" sort="Renner, David M" uniqKey="Renner D" first="David M" last="Renner">David M. Renner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rodela, Emily" sort="Rodela, Emily" uniqKey="Rodela E" first="Emily" last="Rodela">Emily Rodela</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mittelmeier, Telsa M" sort="Mittelmeier, Telsa M" uniqKey="Mittelmeier T" first="Telsa M" last="Mittelmeier">Telsa M. Mittelmeier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Byrd, Aaron" sort="Byrd, Aaron" uniqKey="Byrd A" first="Aaron" last="Byrd">Aaron Byrd</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bolger, Timothy A" sort="Bolger, Timothy A" uniqKey="Bolger T" first="Timothy A" last="Bolger">Timothy A. Bolger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31141444</idno>
<idno type="pmid">31141444</idno>
<idno type="doi">10.1091/mbc.E18-11-0702</idno>
<idno type="pmc">PMC6743465</idno>
<idno type="wicri:Area/Main/Corpus">000265</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000265</idno>
<idno type="wicri:Area/Main/Curation">000265</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000265</idno>
<idno type="wicri:Area/Main/Exploration">000265</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition.</title>
<author>
<name sortKey="Aryanpur, Peyman P" sort="Aryanpur, Peyman P" uniqKey="Aryanpur P" first="Peyman P" last="Aryanpur">Peyman P. Aryanpur</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Renner, David M" sort="Renner, David M" uniqKey="Renner D" first="David M" last="Renner">David M. Renner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rodela, Emily" sort="Rodela, Emily" uniqKey="Rodela E" first="Emily" last="Rodela">Emily Rodela</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mittelmeier, Telsa M" sort="Mittelmeier, Telsa M" uniqKey="Mittelmeier T" first="Telsa M" last="Mittelmeier">Telsa M. Mittelmeier</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Byrd, Aaron" sort="Byrd, Aaron" uniqKey="Byrd A" first="Aaron" last="Byrd">Aaron Byrd</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bolger, Timothy A" sort="Bolger, Timothy A" uniqKey="Bolger T" first="Timothy A" last="Bolger">Timothy A. Bolger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>5' Untranslated Regions (MeSH)</term>
<term>Cytoplasm (metabolism)</term>
<term>DEAD-box RNA Helicases (genetics)</term>
<term>DEAD-box RNA Helicases (metabolism)</term>
<term>Eukaryotic Initiation Factor-4F (metabolism)</term>
<term>Nucleic Acid Conformation (MeSH)</term>
<term>Peptide Chain Elongation, Translational (MeSH)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (antagonists & inhibitors)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Transcription Factors (antagonists & inhibitors)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Conformation d'acide nucléique (MeSH)</term>
<term>Cytoplasme (métabolisme)</term>
<term>DEAD-box RNA helicases (génétique)</term>
<term>DEAD-box RNA helicases (métabolisme)</term>
<term>Facteur-4F d'initiation eucaryote (métabolisme)</term>
<term>Facteurs de transcription (antagonistes et inhibiteurs)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (antagonistes et inhibiteurs)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régions 5' non traduites (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Élongation de la traduction (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DEAD-box RNA Helicases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DEAD-box RNA Helicases</term>
<term>Eukaryotic Initiation Factor-4F</term>
<term>RNA, Messenger</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>5' Untranslated Regions</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>DEAD-box RNA helicases</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Cytoplasme</term>
<term>DEAD-box RNA helicases</term>
<term>Facteur-4F d'initiation eucaryote</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Nucleic Acid Conformation</term>
<term>Peptide Chain Elongation, Translational</term>
<term>Protein Biosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Conformation d'acide nucléique</term>
<term>Régions 5' non traduites</term>
<term>Élongation de la traduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ded1 is a DEAD-box RNA helicase with essential roles in translation initiation. It binds to the eukaryotic initiation factor 4F (eIF4F) complex and promotes 48S preinitiation complex assembly and start-site scanning of 5' untranslated regions of mRNAs. Most prior studies of Ded1 cellular function were conducted in steady-state conditions during nutrient-rich growth. In this work, however, we examine its role in the translational response during target of rapamycin (TOR)C1 inhibition and identify a novel function of Ded1 as a translation repressor. We show that C-terminal mutants of
<i>DED1</i>
are defective in down-regulating translation following TORC1 inhibition using rapamycin. Furthermore, following TORC1 inhibition, eIF4G1 normally dissociates from translation complexes and is degraded, and this process is attenuated in mutant cells. Mapping of the functional requirements for Ded1 in this translational response indicates that Ded1 enzymatic activity and interaction with eIF4G1 are required, while homo-oligomerization may be dispensable. Our results are consistent with a model wherein Ded1 stalls translation and specifically removes eIF4G1 from translation preinitiation complexes, thus removing eIF4G1 from the translating mRNA pool and leading to the codegradation of both proteins. Shared features among
<i>DED1</i>
orthologues suggest that this role is conserved and may be implicated in pathologies such as oncogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31141444</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition.</ArticleTitle>
<Pagination>
<MedlinePgn>2171-2184</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E18-11-0702</ELocationID>
<Abstract>
<AbstractText>Ded1 is a DEAD-box RNA helicase with essential roles in translation initiation. It binds to the eukaryotic initiation factor 4F (eIF4F) complex and promotes 48S preinitiation complex assembly and start-site scanning of 5' untranslated regions of mRNAs. Most prior studies of Ded1 cellular function were conducted in steady-state conditions during nutrient-rich growth. In this work, however, we examine its role in the translational response during target of rapamycin (TOR)C1 inhibition and identify a novel function of Ded1 as a translation repressor. We show that C-terminal mutants of
<i>DED1</i>
are defective in down-regulating translation following TORC1 inhibition using rapamycin. Furthermore, following TORC1 inhibition, eIF4G1 normally dissociates from translation complexes and is degraded, and this process is attenuated in mutant cells. Mapping of the functional requirements for Ded1 in this translational response indicates that Ded1 enzymatic activity and interaction with eIF4G1 are required, while homo-oligomerization may be dispensable. Our results are consistent with a model wherein Ded1 stalls translation and specifically removes eIF4G1 from translation preinitiation complexes, thus removing eIF4G1 from the translating mRNA pool and leading to the codegradation of both proteins. Shared features among
<i>DED1</i>
orthologues suggest that this role is conserved and may be implicated in pathologies such as oncogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aryanpur</LastName>
<ForeName>Peyman P</ForeName>
<Initials>PP</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Renner</LastName>
<ForeName>David M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodela</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mittelmeier</LastName>
<ForeName>Telsa M</ForeName>
<Initials>TM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Byrd</LastName>
<ForeName>Aaron</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bolger</LastName>
<ForeName>Timothy A</ForeName>
<Initials>TA</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, University of Arizona, Tucson, Tucson, AZ 85721.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020121">5' Untranslated Regions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039562">Eukaryotic Initiation Factor-4F</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C492152">DED1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D053487">DEAD-box RNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020121" MajorTopicYN="N">5' Untranslated Regions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053487" MajorTopicYN="N">DEAD-box RNA Helicases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039562" MajorTopicYN="N">Eukaryotic Initiation Factor-4F</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010441" MajorTopicYN="N">Peptide Chain Elongation, Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31141444</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E18-11-0702</ArticleId>
<ArticleId IdType="pmc">PMC6743465</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oncotarget. 2016 May 10;7(19):28169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27058758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Aug 20;59(4):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26212457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2014 Mar 17;25(3):393-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24651015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 05;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27494274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Jul;7(7):1389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18407956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2015 Sep;25(5):286-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26174373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Jul 6;14(1):55-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21723504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 18;286(46):39750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2017 Nov;50(11):539-545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28803610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Jul;18(7):2592-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17475768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23(16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2012 Aug;40(4):794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22817736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Mar 7;275(5305):1468-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9045610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Dec 25;36(6):932-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 May 22;54(4):547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24856220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10464-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27601676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Mar;19(3):984-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2016 Nov;16(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27694156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2012 Dec;12(12):818-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23175120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Oct 13;37(21):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28784717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Jan 28;164(3):487-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26777405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2007;429:163-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17913623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Sep;42(15):10005-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25013175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Feb 11;164(4):757-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26871635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Cancer Res. 2016 Jan 15;6(2):387-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27186411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Oct;17(10):1374-1395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27629041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2017 Dec;168:30-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28414025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2014 Jul-Aug;49(4):343-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25039764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 1;21(19):3475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Apr 19;25(8):1659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16541103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Feb 7;68(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1739968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Sep 16;43(6):962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Oct 03;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30281017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Aug;25(8):1196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26122911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2017 Oct 27;18(1):201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21779027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2015 May;21(5):898-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 20;153(7):1461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Rep. 2018 Mar;39(3):883-892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29328432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Jul;559(7712):130-134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29950728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Jan 26;12:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21269496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Jun;20(11):2673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2014 May-Jun;5(3):301-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24375939</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Arizona">
<name sortKey="Aryanpur, Peyman P" sort="Aryanpur, Peyman P" uniqKey="Aryanpur P" first="Peyman P" last="Aryanpur">Peyman P. Aryanpur</name>
</region>
<name sortKey="Bolger, Timothy A" sort="Bolger, Timothy A" uniqKey="Bolger T" first="Timothy A" last="Bolger">Timothy A. Bolger</name>
<name sortKey="Byrd, Aaron" sort="Byrd, Aaron" uniqKey="Byrd A" first="Aaron" last="Byrd">Aaron Byrd</name>
<name sortKey="Mittelmeier, Telsa M" sort="Mittelmeier, Telsa M" uniqKey="Mittelmeier T" first="Telsa M" last="Mittelmeier">Telsa M. Mittelmeier</name>
<name sortKey="Renner, David M" sort="Renner, David M" uniqKey="Renner D" first="David M" last="Renner">David M. Renner</name>
<name sortKey="Rodela, Emily" sort="Rodela, Emily" uniqKey="Rodela E" first="Emily" last="Rodela">Emily Rodela</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000208 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000208 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31141444
   |texte=   The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31141444" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020